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WIRE RESPONSE DUE TO A MOVING FORCE 
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Abstract: High speed trains are characterized by high stability at high velocity and 
ride comfort, but all these features are conditioned by the problem of ensuring stable current 
collection that is supplied by the pantograph/catenary system. The catenary represents a 
complex structure consisting in a contact wire, messenger wire, droppers, supporting brackets, 
and registration arms. When the train velocity increases, the interaction between the pantograph 
and the catenary may be the cause of the contact loss and this aspect affects the train 
performances. The issue of the pantograph/catenary interaction is a part of the classical moving 
load problem, and two approaches could be considered, respectively considering or not the 
degrees of freedom of the pantograph. When the coupling between the vehicle and the catenary 
is overlooked, the interaction model consists of a moving force travelling on the flexible 
structure of the catenary. This article focuses on the catenary response to a mobile force by 
applying a method differing from the previous research where used the Fourier transform. This 
approach initiates in the properties of the Green function associated to the differential operator 
of the catenary model. 
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1. INTRODUCTION 

 
The vibrations of the pantograph-catenary system have been constantly studied 

in the last 40 years once the travelling speed has much increased. While considering 
the catenary configuration to be seen as an infinite structure with a periodical variation 
of the elasticity, the vibrations of the pantograph-catenary system fall within the issue 
of the vibrations of a moving system on an elastic structure. This type of problems will 
trigger two perspectives that are essentially complementary and help to understand the 
phenomena of interaction between the moving and the elastic structure. The former 
perspective concerns solving the problem of the structure’s response to a moving load, 
which means that the mobile action is reduced to the interaction force, not taking into 
account the degrees of freedom in the moving system [1, 2]. 
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The latter perspective regards the complete solving of the problem by 
considering the degrees of freedom of the mobile system. In a nutshell, the start is from 
the dynamic or static rigidity of the contact string so as to equate the catenary model 
with distributed parameters with one with concentrated and time variable parameters, 
depending on velocity and distance between the catenary supporters. This model is 
‘assembled’ with the pantograph’s, which is described by an oscillating system with 
one with up to three degrees of freedom [3, 4, 5].  

Most of the studies concerning the catenary response to a moving force prefer 
its representation by linear models based on the hypotheses of the vibrant wire.  Thus, 
the simplest model reduces the entire catenary structure to the contact string 
assimilated by an infinite wire connected to a fixed base by elastic elements and of 
uniformly distributed damping (Winkler foundation with a viscous damping). This is 
how the influence of the elasticity variation is neglected, due to the supporters and the 
hangers. The results derived from this model are basic and they can be used for a 
comparison, as did A. Metrikine [1] in order to highlight the non-linear effect brought 
about by the hangers. 
 

2. THE MECHANICAL MODEL 
 

Figure 1 shows a simple catenary system, which consists of the equidistant 
supporters (1) supporting the messenger wire (3). Each support has a cable arm (2) 
from that the contact wire is connected. The level of the contact wire position is 
corrected via the hangers (4). The path of the contact wire takes a zigzag shape, due to 
the steady arms. Both messenger and contact wires are stressed. 
 

 
Fig. 1. Simple catenary system: 

1. supporter; 2. steady arm; 3. messenger wire; 4. hanger; 5. contact wire. 
 
Further, the simplest model of catenary will be considered, namely an infinite 

wire on a continuous elastic support (fig 2). The catenary wire has the transversal 
section A and is made up of a material with density . At the same time, the wire is 
tensed by force T. The elastic support contains elastic and of damping elements with 
linear characteristics, uniformly distributed along the catenary.   
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Fig. 2. Mechanical model of the catenary system. 

 
A constant force P acts upon the wire and moves at a constant speed V. The 

wire movement reports to the fixed system Oxz. Also, a moving system attaches 
against the force O'x'z with  

 

xVtx                            (1) 
 

For a non-moving observer, the wire will start moving more and more as the 
force is getting closer to the observation point and will reach the maximum value when 
the force passes by the observer.  The observer will perceive the wire movement as a 
wave travelling along it.  Should the observer moves with the force P, the wire shape is 
stabilized on either side of the force at a certain time after travelling starts when the 
natural vibrations are damped, since the observer travels along with the wave derived 
from the moving force. 

The wire movement equation reported to the fixed referential is  
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where m=A is the wire mass on the length unit, k – elastic constant, and a – the 
damping constant of the continuous elastic support.  

Considering the steady state behaviour, the change of variable (1) is 
recommended, where the movement is reported to the moving referential. The equation 
writes as  
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where  is the damping degree (only the case of the sub-critical damping is considered, 
 < 1), 0 – the natural wire pulsation on the elastic support, c – the wave propagation 
speed through the wire and p=P/m. The calculation relations for the parameters are as 
follows 
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We are interested in the steady-state response and, due to that, the derivations 
in respect to the time are zero 
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The boundary conditions are 
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To solve the problem of equation (4) and the boundary conditions (5), the 
Green’s functions method is applied [6]. The Green’s function can be built as a linear 
combination of the eigenfunctions of the differential operator of the equation (4). We 
start from the homogenous equation 
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and try the solution 
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The characteristic equation has the following form 
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and its eigenvalues can be written as 
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We have two cases, the so-called subcritical and overcritical cases. 
1. The subcritical case – V < c – the force velocity is smaller than the velocity 

of the elastic wave in the contact wire. In this case, the eigenvalues are real and they 
have opposite signs 
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In fact, the Green’s function G(x',) has two forms satisfying the boundary 
conditions   
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where A- and A+ depend on the  variable. These functions will be calculated using 
both continuity and jump conditions [see ref. 6 and 7].  

The Green’s function has to be continuous in x'=  
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Its derivation in respect to x' has a jump in x'= 
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respectively 
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Upon solving the equations (12) and (13), it is obtained  
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and then the Green function 
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The Green function forms can be treated when considering that   
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If replacing (15) along with the values of 1 and 2 in (14), a ‘condensed’ form 
of the Green function derives 
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The wire travelling in the moving reference system is given by the solution of 
equation (3) written as  
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In the end, the equation for the wire travelling is obtained  
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The wire deformation in the point of application of the moving force will result 
if consider the above relation x' = 0. Here,  
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The equation shows that the higher the wire deformation, the higher the speed, 
which is similar with the decrease in the dynamic rigidity of the contact wire. 

2. The overcritical case (c < V) represents the overcritical case when force P 
travels at a higher speed than the wave propagation speed through the contact wire.  
Two different situations arise, namely V < c/(1-2)1/2 and V > c/(1-2)1/2.  

Should c < V < c/(1-2)1/2, then the natural values are real and positive 
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and if V > c/(1-2)1/2, this will have the natural values be complex-conjugated with the 
real positive part 
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The only possible form of the Green function is  
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where A1 and A2 depend on . 
The continuity conditions of the function (12) the derivate jump (13) 
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A few calculations later, A1 and A2 write as 
 



))(( 21
V

A



2

1

1

c

e

2

))(( 22
21

2

2

cV

e
A






.

(23) 

 

as well as the Green function 
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The latter can be also written as  
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where H(.) is Heaviside’s unit step function. 
The wire travelling reported to the moving reference system also uses the 

equation (20). 
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3. NUMERICAL APPLICATION 
 

The results of the numerical simulation are further presented by usi
model above. The following data have been considered [1]: m=1.1 kg/m, 

=15kN, k=0.4 kN/m2, a=0.5 Ns/m2 and P=55 N.   
 as such 

ng the 
mechanical 
T

The values of the system parameters are
- natural frequency 
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mulation, V=70 m/s≈0.6c), 
the wire arrow falls exponentially on either side of the application point of the constant 
orce. This decrease is more visible before the force rather after it. When damping is 

absent, the wire shape becomes symmetrical. Indeed, for , equation (26) results as 
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which presents the symmetry of wire deformation compared to de x'=0. 
2 1/2For the overcritical case, c/(1- )  >V is the target because here the damping 

degree is very small and c/(1-2)1/2 is a little higher than c/(1-2)1/2 
=1.000071c, which proves the previous statement. 

Figure 3 b shows the wire deformation in an overcritical case. The calculation 
2 a and b, the 

e

c. In fact, 

is for the speed of 130 m/s≈1.11c. While comparing the two figures 
difference between the subcritical and overcritical cases is visible. 

For the overcritical case, the deformation is not symmetrical compared to the 
moving point of force application. Before the force, the wire is not deformed as th  
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force travels faster than the wave propagation speed through the wire. This perspective 
is simil

n is located in the 
immedi

ar with the Match effect in acoustics. On the contrary, there will be a wake zone 
after the force, where the wire deformation is very high and propagates on a significant 
distance, unlike the subcritical case where the wire deformatio

ate vicinity of the force.  
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Fig. 3. Wire deformation:  
a) subcritical speed;  b) postcritical speed.  

 
In the subcritical case, the maximum wire deformation is against the force, 

whereas the maximum deformation migrates somewhere after the force in the 
overcritical case.  

 
4. CONCLUSIO

n for the high speed trains. 
he paper focuses on the issues of catenary response to a moving force, 

starting e contact wire can be assimilated with an infinite tensed 
hord connected to a fixed base by a viscous-elastic continuous support.   

n the critical 
velocity

NS 
 

The study of the catenary to a constant moving force is interesting from a 
practical point of view, thanks to the specific applications regarding the pantograph-
catenary interactio

T
 from the reason that th

c
The solution of the problem is obtained by applying the Green function 

method. The results of the numerical simulation are consistent with those mentioned in 
the literature in review.  

We have two cases, the sub-critical one, when the force velocity is lower than 
the critical velocity and the maximum wire deflection is against the contact point of 
force and the overcritical one, when the velocity of the force is higher tha

 and the maximum wire deflection appears after the force position.    
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The later research will extend the application of this method to the distributed 
parameters model and periodical variation of the elasticity in the contact wire. 
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